Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21

Y Saito, N Murata Kamiya, T Hirayama, Y Ohba and M. Hatakeyama

The Journal of Experimental Medicine, 2010, 207(10), 2157-2174. DOI: 10.1084/jem.20100602


The Helicobacter pylori CagA bacterial oncoprotein plays a critical role in gastric carcinogenesis. Upon delivery into epithelial cells, CagA causes loss of polarity and activates aberrant Erk signaling. We show that CagA-induced Erk activation results in senescence and mitogenesis in nonpolarized and polarized epithelial cells, respectively. In nonpolarized epithelial cells, Erk activation results in oncogenic stress, up-regulation of the p21Waf1/Cip1 cyclin-dependent kinase inhibitor, and induction of senescence. In polarized epithelial cells, CagA-driven Erk signals prevent p21Waf1/Cip1 expression by activating a guanine nucleotide exchange factor–H1–RhoA–RhoA-associated kinase–c-Myc pathway. The microRNAs miR-17 and miR-20a, induced by c-Myc, are needed to suppress p21Waf1/Cip1 expression. CagA also drives an epithelial-mesenchymal transition in polarized epithelial cells. These findings suggest that CagA exploits a polarity-signaling pathway to induce oncogenesis.

ASCI-ID: 1326-337